Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995;77(6):423-32.
doi: 10.1016/0300-9084(96)88155-7.

Interactions of poly(ADP-ribose) with nuclear proteins

Affiliations

Interactions of poly(ADP-ribose) with nuclear proteins

F R Althaus et al. Biochimie. 1995.

Abstract

The molecular mechanisms whereby poly(ADP-ribosyl)ation primes chromatin proteins for an active role in DNA excision repair are not understood. The prevalent view is that the covalent linkage of ADP-ribose polymers is essential for the modification of target protein function. By contrast, we have focused on the possibility that ADP-ribose polymers interact non-covalently with nuclear proteins and thereby modulate their function. The results show that ADP-ribose polymers engage in highly specific and strong non-covalent interactions with a small number of nuclear proteins, predominantly histones, and among these only with specific polypeptide domains. The binding affinities were largely determined by two factors, ie the polymer sizes and the presence of branches. This provides an explanation for the target specificity of the histone shuttle mechanism that was previously reported by our laboratory. Interestingly, the polymer molecules being most effective in protein targeting in vitro, are strictly regulated in mammalian cells during DNA repair in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources