Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995;45(2):97-105.

Mechanism of action of bicyclic imidazoles defines a translational regulatory pathway for tumor necrosis factor alpha

Affiliations
  • PMID: 7583362

Mechanism of action of bicyclic imidazoles defines a translational regulatory pathway for tumor necrosis factor alpha

W Prichett et al. J Inflamm. 1995.

Abstract

Expression of tumor necrosis factor alpha (TNF) by lipopolysaccharide-treated human monocytic cells is inhibited by bicyclic imidazoles. We studied the mechanism of action of a representative inhibitor, SK&F 86002, on synthesis of TNF by THP-1 cells. Levels of TNF protein were lowered by SK&F 86002 under conditions where TNF mRNA accumulation was unaffected, suggesting a post-transcriptional action. No effect of SK&F 86002 was detected on the rate of induction of TNF mRNA or steady state levels over a 5 hr period. The kinetics of SK&F 86002 inhibition of TNF protein synthesis coincided with those of anisomycin, not with actinomycin, suggesting an effect of SK&F 86002 on TNF mRNA translation. By using sucrose gradient sedimentation, we showed that quiescent THP-1 cells contained a substantial amount of TNF mRNA which was primarily associated with 43S pre-ribosomal complexes. Activation of the cells with lipopolysaccharide caused an elevation of the TNF mRNA level and increased the proportion associated with polyribosomes. Treatment with lipopolysaccharide plus SK&F 86002 led to a marked accumulation of TNF mRNA in the 43S complex-containing fractions and a concomitant reduction of polysome-associated TNF message. Neither lipopolysaccharide nor SK&F 86002 affected the amount or distribution of cyclophilin mRNA in the same fractions. The results suggest that lipopolysaccharide activates TNF translation at the initiation step and that SK&F 86002 inhibits this activation.

PubMed Disclaimer

Substances

LinkOut - more resources