Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994;2(3):150-7.
doi: 10.1007/BF01467917.

Anterior cruciate ligament reconstruction using cryopreserved irradiated bone-ACL-bone-allograft transplants

Affiliations

Anterior cruciate ligament reconstruction using cryopreserved irradiated bone-ACL-bone-allograft transplants

M J Goertzen et al. Knee Surg Sports Traumatol Arthrosc. 1994.

Erratum in

  • Knee Surg Sports Traumatol Arthrosc 1996;4(3):190

Abstract

Bone-ACL-bone allograft transplantation has been investigated as a potential solution to reconstruction of the anterior cruciate ligament (ACL). To minimize disease transmission (e.g. the acquired immuno deficiency syndrome), bony and collagenous tissues should be sterilized. Recent animal studies indicate that gamma irradiation and ethylene oxide sterilization result in diminished histological and biomechanical properties. The purpose of the present study was biomechanical and histological determination of the fate of deep-frozen gamma-irradiated (2.5 Mrad) canine bone-ACL-bone allografts with argon gas protection. Particular attention was paid to collagenous and neuroanatomical morphology 3, 6 and 12 months after implantation, by comparison to a non-irradiated control group. Sixty skeletally mature foxhounds were operated on in this study, divided up in two groups of 30 dogs each. In group A animals the ACL was replaced by a deep-frozen (-80 degrees C) bone-ACL-bone LAD-augmented allograft subjected to 2.5 Mrad gamma irradiation with argon gas protection. The animals in group B received an LAD-augmented ACL-allograft transplant without gamma irradiation. All knees from both groups were evaluated 3, 6 and 12 months after implantation in regard to biomechanical properties, collagen morphology and routine histology (haematoxylin and eosin stain, polarization microscopy), neuroanatomical morphology (silver and gold chloride stain) and microvasculature (modified Spalteholz technique). The irradiated ACL allografts withstood a maximum load that was 63.8% (718.3 N) of the maximum load of normal ACLs after 12 months. By contrast, the non-irradiated allografts failed at 69.1% (780.1 N) of the maximum load of normal control ACLs.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Bone Joint Surg Am. 1971 Jun;53(4):710-8 - PubMed
    1. J Bone Joint Surg Am. 1973 Jul;55(5):899-922 - PubMed
    1. Am J Sports Med. 1979 Mar-Apr;7(2):81-4 - PubMed
    1. Z Orthop Ihre Grenzgeb. 1950;79(2):316-34 - PubMed
    1. J Bone Joint Surg Br. 1977 Feb;59(1):53-7 - PubMed

LinkOut - more resources