An information-maximization approach to blind separation and blind deconvolution
- PMID: 7584893
- DOI: 10.1162/neco.1995.7.6.1129
An information-maximization approach to blind separation and blind deconvolution
Abstract
We derive a new self-organizing learning algorithm that maximizes the information transferred in a network of nonlinear units. The algorithm does not assume any knowledge of the input distributions, and is defined here for the zero-noise limit. Under these conditions, information maximization has extra properties not found in the linear case (Linsker 1989). The nonlinearities in the transfer function are able to pick up higher-order moments of the input distributions and perform something akin to true redundancy reduction between units in the output representation. This enables the network to separate statistically independent components in the inputs: a higher-order generalization of principal components analysis. We apply the network to the source separation (or cocktail party) problem, successfully separating unknown mixtures of up to 10 speakers. We also show that a variant on the network architecture is able to perform blind deconvolution (cancellation of unknown echoes and reverberation in a speech signal). Finally, we derive dependencies of information transfer on time delays. We suggest that information maximization provides a unifying framework for problems in "blind" signal processing.
Similar articles
-
Blind source separation and deconvolution: the dynamic component analysis algorithm.Neural Comput. 1998 Aug 15;10(6):1373-424. Neural Comput. 1998. PMID: 9698349
-
A semi-parametric hybrid neural model for nonlinear blind signal separation.Int J Neural Syst. 2000 Apr;10(2):79-93. doi: 10.1142/S0129065700000089. Int J Neural Syst. 2000. PMID: 10939342
-
Inverting Monotonic Nonlinearities by Entropy Maximization.PLoS One. 2016 Oct 25;11(10):e0165288. doi: 10.1371/journal.pone.0165288. eCollection 2016. PLoS One. 2016. PMID: 27780261 Free PMC article.
-
Nonholonomic orthogonal learning algorithms for blind source separation.Neural Comput. 2000 Jun;12(6):1463-84. doi: 10.1162/089976600300015466. Neural Comput. 2000. PMID: 10935723
-
Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.J Pharm Biomed Anal. 2000 Jun;22(5):717-27. doi: 10.1016/s0731-7085(99)00272-1. J Pharm Biomed Anal. 2000. PMID: 10815714 Review.
Cited by
-
Resting-state networks distinguish locked-in from vegetative state patients.Neuroimage Clin. 2016 Jun 6;12:16-22. doi: 10.1016/j.nicl.2016.06.003. eCollection 2016. Neuroimage Clin. 2016. PMID: 27330978 Free PMC article.
-
A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex.J Neurophysiol. 2016 Sep 1;116(3):938-48. doi: 10.1152/jn.00260.2016. Epub 2016 May 25. J Neurophysiol. 2016. PMID: 27226450 Free PMC article.
-
Identification of suicidality in patients with major depressive disorder via dynamic functional network connectivity signatures and machine learning.Transl Psychiatry. 2022 Sep 12;12(1):383. doi: 10.1038/s41398-022-02147-x. Transl Psychiatry. 2022. PMID: 36097160 Free PMC article.
-
Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies.Science. 2021 Apr 2;372(6537):eabf3119. doi: 10.1126/science.abf3119. Science. 2021. PMID: 33795429 Free PMC article.
-
Does gaze direction of fearful faces facilitate the processing of threat? An ERP study of spatial precuing effects.Cogn Affect Behav Neurosci. 2021 Aug;21(4):837-851. doi: 10.3758/s13415-021-00890-0. Epub 2021 Apr 12. Cogn Affect Behav Neurosci. 2021. PMID: 33846951
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical