Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 May;73(5):521-32.
doi: 10.1139/y95-067.

Roles of peptides and other substances in cotransmission from vascular autonomic and sensory neurons

Affiliations
Review

Roles of peptides and other substances in cotransmission from vascular autonomic and sensory neurons

J L Morris et al. Can J Physiol Pharmacol. 1995 May.

Abstract

Blood vessels may be innervated by up to three major classes of neurons: sympathetic vasoconstrictor neurons; sympathetic or parasympathetic vasodilator neurons; and peripheral fibres of small diameter sensory neurons, which can mediate vasodilation. Most vascular neurons utilise multiple transmitters, including neuropeptides and small nonpeptides such as ATP or nitric oxide, often in addition to noradrenaline or acetylcholine. Subpopulations of each major class of vascular neurons innervating different vascular segments may contain different combinations of neurotransmitters. Furthermore, the same population of neurons can release different cotransmitters in response to different patterns of stimulation. In general, peptides mediate slower and more long lasting changes in vascular resistance than do nonpeptides. Thus, autonomic and sensory neurons are well adapted to produce qualitatively different vascular effects in response to different types of afferent input. The major challenge for the future is to develop new antagonists for many of the substances colocalised in vascular neurons, particularly neuropeptides. These agents will allow us to precisely determine the relative roles of multiple cotransmitters, and are likely to provide therapeutic agents that can be targeted to specific regions of the vasculature.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources