Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep;30(3):357-62.

Effects of thapsigargin on aequorin-injected and skinned preparations of ferret ventricular muscles

Affiliations
  • PMID: 7585826

Effects of thapsigargin on aequorin-injected and skinned preparations of ferret ventricular muscles

T Tanaka et al. Cardiovasc Res. 1995 Sep.

Abstract

Objective: We investigated the effects of thapsigargin (TG) (0.1-1 microM) on the relation between intracellular Ca2+ concentration and tension in ferret papillary muscles using aequorin-injected and skinned preparations.

Methods: Aequorin was injected into the superficial cells of ferret papillary muscles; the Ca2+ signals of aequorin and tension in twitch and those with the application of 15 mM caffeine were simultaneously measured. The alteration of Ca2+ sensitivity of the contractile elements was examined by measuring the pCa-tension relation in Triton-X-treated skinned preparations.

Results: TG decreased the peak of the Ca2+ signal accompanied by a prolonged decay time. However, the tension was scarcely altered even at 1 microM TG. TG inhibited the caffeine-induced Ca2+ signal. Prolongation of decay of the Ca2+ signal by TG in twitch was further enhanced by isoprenaline (10 nM). The pCa-tension relation of the skinned preparation was slightly but significantly shifted to the right by TG.

Conclusions: The apparent dissociation of the effects of TG on the Ca2+ signal and tension in intact preparations is not a result of alteration of the Ca2+ sensitivity of the myofilaments. The effects of TG in multicellular preparations are probably limited to the outer layer of the preparation. The slower time course of the Ca2+ signal induced by TG is due to the inhibition of Ca2+ uptake by sarcoplasmic reticulum, which is more significantly observed when the intracellular Ca2+ transient is increased by isoprenaline.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources