Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Dec;77(6):1222-8.
doi: 10.1161/01.res.77.6.1222.

Cutaneous active vasodilation in humans is mediated by cholinergic nerve cotransmission

Affiliations
Free article
Comparative Study

Cutaneous active vasodilation in humans is mediated by cholinergic nerve cotransmission

D L Kellogg Jr et al. Circ Res. 1995 Dec.
Free article

Abstract

During heat stress, increases in blood flow in nonglabrous skin in humans are mediated through active vasodilation by an unknown neurotransmitter mechanism. To investigate this mechanism, a three-part study was performed to determine the following: (1) Is muscarinic receptor activation necessary for active cutaneous vasodilation? We iontophoretically applied atropine to a small area of forearm skin. At that site and an untreated control site, we measured the vasomotor (laser-Doppler blood flow [LDF]) and sudomotor (relative humidity) responses to whole-body heat stress. Blood pressure was monitored. Cutaneous vascular conductance (CVC) was calculated (LDF divided by mean arterial pressure). Sweating was blocked at treated sites only. CVC rose at both sites (P < .05 at each site); thus, cutaneous active vasodilation is not effected through muscarinic receptors. (2) Are nonmuscarinic cholinergic receptors present on cutaneous arterioles? Acetylcholine (ACh) was iontophoretically applied to forearm skin at sites pretreated by atropine iontophoresis and at untreated sites. ACh increased CVC at untreated sites (P < .05) but not at atropinized sites. Thus, the only functional cholinergic receptors on cutaneous vessels are muscarinic. (3) Does cutaneous active vasodilation involve cholinergic nerve cotransmission? Botulinum toxin was injected intradermally in the forearm to block release of ACh and any coreleased neurotransmitters. Heat stress was performed as in part 1 of the study. At treated sites, CVC and relative humidity remained at baseline levels during heat stress (P > .05). Active vasodilator and sudomotor responses to heat stress were abolished by botulinum toxin. We conclude that cholinergic nerve activation mediates cutaneous active vasodilation through release of an unknown cotransmitter, not through ACh.

PubMed Disclaimer

Publication types

LinkOut - more resources