Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Nov 1;92(9 Suppl):II405-12.
doi: 10.1161/01.cir.92.9.405.

Magnesium cardioplegia enhances mRNA levels and the maximal velocity of cytochrome oxidase I in the senescent myocardium during global ischemia

Affiliations

Magnesium cardioplegia enhances mRNA levels and the maximal velocity of cytochrome oxidase I in the senescent myocardium during global ischemia

E A Faulk et al. Circulation. .

Abstract

Background: The aged myocardium accumulates significantly more cytosolic calcium [Ca2+]i during ischemia, and functional recovery is more severely compromised as compared with the mature heart. Cardioplegia ameliorates these phenomena. The mechanism by which increased calcium accumulation reduces functional recovery in the senescent myocardium is unknown, but it has been suggested that futile calcium cycling in the mitochondria leading to depletion of ATP stores during normothermic global ischemia may be involved.

Methods and results: To investigate the effect of cardioplegia on mitochondrial calcium ([Ca2+]mt) accumulation and the expression of cytochrome oxidase I (COX I) during global ischemia, mitochondria were isolated from mature (age, 15 to 20 weeks) and aged (age > 130 weeks) rabbit hearts after Langendorff perfusion. Five perfused heart groups were investigated: 30 minutes of global ischemia without treatment (control), with potassium (K, 20 mmol/L), magnesium (Mg, 20 mmol/L), or potassium and magnesium (K/Mg) cardioplegia. No significant difference in [Ca2+]mt was evident in mature hearts with any protocol. In aged hearts, [Ca2+]mt was increased in global ischemia but was ameliorated with Mg and K/Mg cardioplegia. COX I mRNA levels in aged hearts were lower in both control and global ischemia but were increased with cardioplegia. Maximal velocities for COX I were significantly increased with Mg cardioplegia both in the mature and the aged myocardium.

Conclusions: K and/or Mg cardioplegia ameliorates [Ca2+]mt accumulation in aged hearts during normothermic global ischemia and increases COX I mRNA levels to a level not significantly different from that found in mature hearts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources