Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep 15;232(3):849-58.

Crystal and molecular structure at 0.16-nm resolution of the hybrid Bacillus endo-1,3-1,4-beta-D-glucan 4-glucanohydrolase H(A16-M)

Affiliations
  • PMID: 7588726
Free article

Crystal and molecular structure at 0.16-nm resolution of the hybrid Bacillus endo-1,3-1,4-beta-D-glucan 4-glucanohydrolase H(A16-M)

M Hahn et al. Eur J Biochem. .
Free article

Abstract

H(A16-M) is a hybrid endo-1,3-1,4-beta-D-glucan 4-glucanohydrolase from Bacillus. Its crystal structure was refined using synchrotron X-ray diffraction data up to a maximal resolution of 0.16 nm. The R value of the resulting model is 14.3% against 21,032 reflections > 2 sigma. 93% of the amino acid residues are in the most favorable regions of the Ramachandran diagram, and geometrical parameters are in accordance with other proteins solved at high resolution. As shown earlier [Keitel, T., Simon, O., Borriss, R. & Heinemann, U. (1993) Proc. Natl Acad. Sci. USA 90, 5287-5291], the protein folds into a compact jellyroll-type beta-sheet structure. A systematic analysis of the secondary structure reveals the presence of two major antiparallel beta-sheets and a three-stranded minor mixed sheet. Amino acid residues involved in catalysis and substrate binding are located inside a deep channel spanning the surface of the protein. To investigate the stereochemical cause of the observed specificity of endo-1,3-1,4-beta-D-glucan 4-glucanohydrolases towards beta-1,4 glycosyl bonds adjacent to beta-1,3 bonds, the high-resolution crystal structure has been used to model an enzyme-substrate complex. It is proposed that productive substrate binding to the subsites p1, p2 and p3 of H(A16-M) requires a beta-1,3 linkage between glucose units bound to p1 and p2.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources