Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Nov;44(11):1345-8.
doi: 10.2337/diab.44.11.1345.

Hyperglycemia activates glucose transport in rat skeletal muscle via a Ca(2+)-dependent mechanism

Affiliations

Hyperglycemia activates glucose transport in rat skeletal muscle via a Ca(2+)-dependent mechanism

L A Nolte et al. Diabetes. 1995 Nov.

Abstract

We investigated the acute effect of hyperglycemia on 3-O-methylglucose transport in isolated rat epitrochlearis muscles. High levels of glucose (20 mmol/l) induced an approximately twofold increase in the rate of glucose transport when compared with muscles exposed to a low level of glucose (8 mmol/l) (P < 0.001). The hyperglycemic effect was additive to the effects of both insulin and exercise on the glucose transport rates. Dantrolene (25 mumol/l), a potent inhibitor of Ca2+ release from the sarcoplasmic reticulum, blocked the ability of hyperglycemia to increase glucose transport by 73% (P < 0.01). Although dantrolene had no effect on the non-insulin-stimulated or the insulin-stimulated glucose transport rates during normoglycemic conditions, the effect of exercise was completely blocked in the presence of dantrolene (P < 0.01). Inhibition of phosphatidylinositol (PI) 3-kinase by wortmannin (500 nmol/l) had no effect on the activation of glucose transport by hyperglycemia, whereas the insulin-stimulated glucose transport was completely abolished (P < 0.001). These findings suggest that hyperglycemia activates glucose transport by a Ca(2+)-dependent activation of glucose transport does not involve the activation of PI 3-kinase and is separate from the mass-action effect of glucose on glucose transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms