Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Oct;19(4):395-404.
doi: 10.1016/0891-5849(95)00032-s.

Hyperbilirubinemia results in reduced oxidative injury in neonatal Gunn rats exposed to hyperoxia

Affiliations
Free article

Hyperbilirubinemia results in reduced oxidative injury in neonatal Gunn rats exposed to hyperoxia

P A Dennery et al. Free Radic Biol Med. 1995 Oct.
Free article

Abstract

Bilirubin is a potent antioxidant in vitro. To determine whether bilirubin also is an antioxidant in vivo, we studied markers of oxidative injury in the Gunn rat model exposed to hyperoxia. Homozygous jaundiced males were mated with heterozygous nonjaundiced females to obtain both jaundiced and nonjaundiced pups within a litter. Once delivered, the pups and their mother were placed in air (21% O2) or hyperoxia (> 95% O2) for 3 d. Both jaundiced and nonjaundiced pups were removed from the chambers daily. Animals were sacrificed and blood was drawn for determination of serum bilirubin, blood thiobarbituric acid-reactive substances (TBARS) by fluorescence assay, serum hydroperoxides, and serum protein oxidation. Tissues (liver, lung, and brain) were assayed for lipid peroxides (TBARS, conjugated dienes [CD], loss of polyunsaturated fatty acid content [PUFA]). We also measured a wide range of serum antioxidants including superoxide dismutase, catalase, glutathione, vitamins A, C, and E, and uric acid. Blood TBARS were significantly decreased in the jaundiced pups compared to the nonjaundiced pups on day 3 of hyperoxia, and blood TBARS were inversely correlated to serum bilirubin on day 3 of hyperoxia (R2 +/- .89). Similar decreases in serum lipid hydroperoxides and serum protein carbonyl content were detected in the jaundiced pups as compared to their nonjaundiced littermates. Other serum antioxidants were not increased in jaundiced animals compared to nonjaundiced animals. Relative lung weight was lower in jaundiced pups exposed to hyperoxia compared to similarly exposed nonjaundiced pups, suggesting a reduction in hyperoxia-induced lung edema. We detected no significant effects of bilirubin on parameters of lipid peroxidation in solid tissues. We conclude that serum bilirubin protects against serum oxidative damage in the first days of life in neonatal Gunn rats exposed to hyperoxia. We speculate that bilirubin is a functionally important transitional antioxidant in the circulation of human neonates and that it may be involved in modulation of injury due to hyperoxia.

PubMed Disclaimer

Publication types

LinkOut - more resources