Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 May;82(1-2):83-93.
doi: 10.3109/00207459508994292.

Comparative study of the analgesic and paralytic effects induced by intrathecal dynorphin a in rats

Affiliations
Comparative Study

Comparative study of the analgesic and paralytic effects induced by intrathecal dynorphin a in rats

J C Xue et al. Int J Neurosci. 1995 May.

Abstract

Intrathecal injection of dynorphin A produced dual effects on sensory and motor functions in the spinal cord of the rat. At a dose of 5 nmol, dynorphin A produced an increase in tail flick latency (TFL) as well as a reversible motor paralysis as assessed by change in the angle of inclined plane. At a dose of 10 or 20 nmol, dynorphin produced a motor paralysis lasting for up to 24 hours. The effect of dynorphin A on the sensory function of the spinal cord was shown by an increase in the vocalization threshold induced by electrical stimulation of the tail, at dose range of 1.25-10 nmol, with a quick onset (5 min) and relatively short duration (within 60 min). Unlike tail flick reaction which involves spinal motor function, tail stimulation-induced vocalization threshold is a relatively pure index for spinal nociceptive activities. The differential effect of dynorphin on sensory and motor function was supported by the evidence that (1) dynorphin-induced analgesic effect (increase in vocalization threshold) was naloxone reversible, whereas dynorphin-induced motor paralysis was naloxone resistant. (2) Nor-BNI, a specific antagonist for kappa opioid receptor, blocked the sensory effect of dynorphin, but had no influence on motor effect of dynorphin. It is thus concluded that dynorphin has both analgesic and paralytic effects in spinal cord. The analgesia shown by an increase of vocalization threshold is an opioid effect, most probably mediated by kappa opioid receptor; the paralytic effect, however, is a non-opioid effect. The increase of TFL induced by dynorphin involves both sensory (analgesia) and motor (paralysis) effects.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources