Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Nov;131(3):655-67.
doi: 10.1083/jcb.131.3.655.

Characterization of T cell mutants with defects in capacitative calcium entry: genetic evidence for the physiological roles of CRAC channels

Affiliations

Characterization of T cell mutants with defects in capacitative calcium entry: genetic evidence for the physiological roles of CRAC channels

C M Fanger et al. J Cell Biol. 1995 Nov.

Abstract

Prolonged Ca2+ influx is an essential signal for the activation of T lymphocytes by antigen. This influx is thought to occur through highly selective Ca2+ release-activated Ca2+ (CRAC) channels that are activated by the depletion of intracellular Ca2+ stores. We have isolated mutants of the Jurkat human T cell line NZdipA to explore the molecular mechanisms that underlie capacitative Ca2+ entry and to allow a genetic test of the functions of CRAC channels in T cells. Five mutant cell lines (CJ-1 through CJ-5) were selected based on their failure to express a lethal diphtheria toxin A chain gene and a lacZ reporter gene driven by NF-AT, a Ca(2+)- and protein kinase C-dependent transcription factor. The rate of Ca2+ influx evoked by thapsigargin was reduced to varying degrees in the mutant cells whereas the dependence of NF-AT/lacZ gene transcription on [Ca2+]i was unaltered, suggesting that the transcriptional defect in these cells is caused by a reduced level of capacitative Ca2+ entry. We examined several factors that determine the rate of Ca2+ entry, including CRAC channel activity, K(+)-channel activity, and Ca2+ clearance mechanisms. The only parameter found to be dramatically altered in most of the mutant lines was the amplitude of the Ca2+ current (ICRAC), which ranged from 1 to 41% of that seen in parental control cells. In each case, the severity of the ICRAC defect was closely correlated with deficits in Ca2+ influx rate and Ca(2-)-dependent gene transcription. Behavior of the mutant cells provides genetic evidence for several roles of ICRAC in T cells. First, mitogenic doses of ionomycin appear to elevate [Ca2+]i primarily by activating CRAC channels. Second, ICRAC promotes the refilling of empty Ca2+ stores. Finally, CRAC channels are solely responsible for the Ca2+ influx that underlies antigen-mediated T cell activation. These mutant cell lines may provide a useful system for isolating, expressing, and exploring the functions of genes involved in capacitative Ca2+ entry.

PubMed Disclaimer

References

    1. J Cell Physiol. 1969 Dec;74(3):245-58 - PubMed
    1. Cell Regul. 1991 Nov;2(11):915-25 - PubMed
    1. Nature. 1985 Jan 24-30;313(6000):318-20 - PubMed
    1. J Physiol. 1985 Jan;358:197-237 - PubMed
    1. Nature. 1987 Mar 19-25;326(6110):301-4 - PubMed

Publication types