Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Nov 15;155(10):5011-7.

Neuroantigen-specific Th2 cells are inefficient suppressors of experimental autoimmune encephalomyelitis induced by effector Th1 cells

Affiliations
  • PMID: 7594508

Neuroantigen-specific Th2 cells are inefficient suppressors of experimental autoimmune encephalomyelitis induced by effector Th1 cells

A Khoruts et al. J Immunol. .

Abstract

We have identified a method of polarizing polyclonal populations of activated T helper cells toward either the Th1 or Th2 phenotype using different short-term in vitro culture conditions. Since the Ag used was an encephalitogenic peptide for SJL/J mice, the pathogenic potential of these cell populations was tested in an adoptive transfer model of experimental autoimmune encephalomyelitis (EAE). Th1 cells reproducibly caused severe EAE, whereas highly polarized Th2 cells did not. Furthermore, highly polarized Th2 cells did not suppress EAE caused by Th1 cells. The anti-inflammatory cytokines made by Th2 cells may simply fail to inhibit tissue destruction mediated by differentiated Th1 cells at the effector phase of the disease. It is also possible that highly polarized Th2 cells may be inefficient at crossing the blood-brain barrier, which may limit their suppressive potential. In contrast, incompletely skewed T cell populations that produced high levels of both Th1 and Th2 cytokines were consistently only weakly encephalitogenic. Therefore, disease inhibition by Th2 cytokines may best be accomplished by intervention at earlier points preceding development of differentiated Th1 cells.

PubMed Disclaimer

Publication types