Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Apr 15;30(6):469-79.
doi: 10.1002/jemt.1070300604.

Myoblast transfer and gene therapy in muscular dystrophies

Affiliations
Review

Myoblast transfer and gene therapy in muscular dystrophies

C N Pagel et al. Microsc Res Tech. .

Abstract

Myoblast transfer therapy and gene therapy have both been proposed as potential treatments for inherited myopathies, such as Duchenne muscular dystrophy (DMD). The success of myoblast implantation in mouse models, where problems such as immune rejection are easily overcome, have led to similar experiments being attempted on Duchenne patients with limited, if any, success. Gene therapy, either by viral vectors or direct injection of the plasmid, has also had some success in animal models. Although both techniques, either separately or in combination, show some promise for the treatment of DMD, there are still many issues to be investigated in animal models, including the following: What is the best source of muscle precursor cells (mpc), and how may sufficient cells be obtained? What is the best vehicle for gene therapy? How far from the injection site can an implanted cell or gene have an effect? How can immune rejection of the injected cells or introduced protein be overcome? Does the introduced dystrophin lead to improved muscle function? Can cardiac muscle can be successfully treated by gene therapy? Can skeletal muscle which has undergone a great deal of damage be improved by either cell or gene therapy?

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources