Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jun;47(6):1106-11.

Paclitaxel (taxol) inhibits protein isoprenylation and induces apoptosis in PC-3 human prostate cancer cells

Affiliations
  • PMID: 7603448

Paclitaxel (taxol) inhibits protein isoprenylation and induces apoptosis in PC-3 human prostate cancer cells

R Danesi et al. Mol Pharmacol. 1995 Jun.

Abstract

Paclitaxel was examined for its effects on cell survival, internucleosomal DNA fragmentation, and protein isoprenylation in the human prostate cancer cell line PC-3. Treatment of cells with paclitaxel at 5-60 nM for 24 hr resulted in a dose-dependent inhibition of cell viability (IC50, 31.2 nM), which was partially prevented by supplementing the cell culture medium with two nonsterol polyisoprenyl compounds, farnesyl-pyrophosphate (-PP) and geranylgeranyl-PP (3 microM each). Furthermore, agarose gel electrophoresis of DNA extracted from cells treated with paclitaxel (15-60 nM) for 24 hr showed DNA laddering with production of fragments of 180-base pair multiples, indicating the occurrence of apoptotic cell death. Internucleosomal DNA fragmentation by paclitaxel was also detected by a photometric enzyme immunoassay using antihistone antibodies; if culture medium was supplemented with farnesyl-PP and geranylgeranyl-PP (3 microM each), a reduction in mono- and oligonucleosome production was observed. The post-translational incorporation of metabolites of (RS)-[5-3H]mevalonolactone (100 microCi/ml) into prenylated proteins of PC-3 cells was inhibited by paclitaxel at 30 and 60 nM. In addition, the immunoprecipitation of p21ras and p21rap-1 proteins from PC-3 cells exposed to paclitaxel (30 and 60 nM) and labeled with (RS)-[5-3H]mevalonolactone showed a substantial inhibition of the incorporation of farnesyl and geranylgeranyl prenoid groups, respectively, into the aforementioned proteins. These results indicate that the inhibition of protein isoprenylation is a novel component of the complex biochemical effects of the drug and plays an important role in the mechanism of paclitaxel cytotoxicity in PC-3 cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms