The role of the cytoskeleton in Plasmodium falciparum merozoite biology: an electron-microscopic view
- PMID: 7605118
- DOI: 10.1080/00034983.1995.11812940
The role of the cytoskeleton in Plasmodium falciparum merozoite biology: an electron-microscopic view
Abstract
The biochemical, ultrastructural and experimental data concerning the organization and biological roles of the merozoite cytoskeleton are briefly reviewed. Actin is known to be expressed in the asexual erythrocytic stages, and has also been demonstrated in Plasmodium falciparum merozoites biochemically and visualized by fluorescence microscopy after appropriate labelling. Experimental evidence indicates that actin-myosin-based motility is important in merozoite locomotion during red-cell invasion. Microtubules also occur in P. falciparum merozoites in the form of a small longitudinal band of subpellicular microtubules, and experiments with anti-microtubule drugs indicate that microtubules are involved in some aspect of invasion. In the late-stage schizont, microtubules are also important in merozoite morphogenesis. The numbers and positions of the merozoite apices within the schizont are spatially related to the spindle poles of the final mitotic division, and extranuclear microtubules are probably responsible for the trafficking of vesicles from a single Golgi cisterna to form the apical organelles. In addition to these cytoskeletal structures, numerous short cytoskeletal filaments of unknown composition attach the merozoite plasma membrane to the underlying pellicular cisterna, and this process may drive the budding of merozoites from the parent schizont.
Similar articles
-
Plasmodium falciparum: characterization of organelle migration during merozoite morphogenesis in asexual malaria infections.Exp Parasitol. 1998 Mar;88(3):184-93. doi: 10.1006/expr.1998.4254. Exp Parasitol. 1998. PMID: 9562421
-
Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development.J Cell Sci. 2003 Sep 15;116(Pt 18):3825-34. doi: 10.1242/jcs.00665. Epub 2003 Aug 5. J Cell Sci. 2003. PMID: 12902400
-
A role for microtubules in Plasmodium falciparum merozoite invasion.Parasitology. 1997 Jan;114 ( Pt 1):1-6. doi: 10.1017/s0031182096008050. Parasitology. 1997. PMID: 9289695
-
A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages.Parasitol Today. 2000 Oct;16(10):427-33. doi: 10.1016/s0169-4758(00)01755-5. Parasitol Today. 2000. PMID: 11006474 Review.
-
Vesicle transport: the role of actin filaments and myosin motors.Microsc Res Tech. 1999 Oct 15;47(2):93-106. doi: 10.1002/(SICI)1097-0029(19991015)47:2<93::AID-JEMT2>3.0.CO;2-P. Microsc Res Tech. 1999. PMID: 10523788 Review.
Cited by
-
The inner membrane complex through development of Toxoplasma gondii and Plasmodium.Cell Microbiol. 2014 May;16(5):632-41. doi: 10.1111/cmi.12285. Epub 2014 Mar 21. Cell Microbiol. 2014. PMID: 24612102 Free PMC article. Review.
-
Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum.BMC Genomics. 2010 Oct 18;11:577. doi: 10.1186/1471-2164-11-577. BMC Genomics. 2010. PMID: 20955606 Free PMC article.
-
Heme Detoxification in the Malaria Parasite Plasmodium falciparum: A Time-Dependent Basal-Level Analysis.bioRxiv [Preprint]. 2025 Mar 6:2025.03.06.641703. doi: 10.1101/2025.03.06.641703. bioRxiv. 2025. PMID: 40093040 Free PMC article. Preprint.
-
Identification and characterization of an unusual class I myosin involved in vesicle traffic in Trypanosoma brucei.PLoS One. 2010 Aug 19;5(8):e12282. doi: 10.1371/journal.pone.0012282. PLoS One. 2010. PMID: 20808867 Free PMC article.
-
Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium.Cilia. 2016 Feb 4;5:3. doi: 10.1186/s13630-016-0025-5. eCollection 2015. Cilia. 2016. PMID: 26855772 Free PMC article. Review.