Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul;77(7):1050-7.
doi: 10.2106/00004623-199507000-00011.

Strain and loading of the second metatarsal during heel-lift

Affiliations

Strain and loading of the second metatarsal during heel-lift

N A Sharkey et al. J Bone Joint Surg Am. 1995 Jul.

Abstract

Metatarsal stress fractures occur in military recruits after long marches and in athletes after episodes of overtraining involving running or jumping. It has been demonstrated that contraction of the plantar flexors of the toes helps to counteract the moments placed on the metatarsals by body weight. It is possible that physiological fatigue due to strenuous or repetitive exercise reduces the rate and force of contraction of the plantar flexors, thereby increasing metatarsal strain per cycle, and that this mechanism is the primary cause of stress fractures of these bones. To test the hypothesis that fatigue of the plantar flexors causes increased metatarsal loading, thereby predisposing these bones to stress fracture, we measured metatarsal strains in nine fresh cadaveric feet with use of an apparatus that simulated physiological loading due to body weight as well as contraction of the plantar flexors. Each foot was loaded to 750 newtons of ground-reaction force by simulated contraction of the triceps surae, and strains were recorded in the mid-part of the shaft of the second metatarsal. Tests were repeated with use of simulated activity of different combinations of the flexor digitorum longus, flexor hallucis longus, peroneus brevis, peroneus longus, and tibialis posterior muscles. In situ bending moments and axial loads subsequently were derived for each configuration. Dorsal strain was significantly reduced by simulated contraction of the flexor hallucis longus. Plantar-dorsal bending was significantly reduced by simulated contraction of the flexor digitorum longus.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources