Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Apr;40(4):543-74.
doi: 10.1088/0031-9155/40/4/005.

MMC--a high-performance Monte Carlo code for electron beam treatment planning

Affiliations
Comparative Study

MMC--a high-performance Monte Carlo code for electron beam treatment planning

H Neuenschwander et al. Phys Med Biol. 1995 Apr.

Abstract

The macro Monte Carlo (MMC) method has been developed to improve the speed of traditional Monte Carlo (MC) high-energy electron transport calculations without loss in accuracy. The MMC algorithm uses results derived from conventional MC simulations of electron transport through macroscopic spheres of various radii and consisting of a variety of media. Based on these results, electrons are transported in macroscopic steps through the absorber. The absorber geometry is represented by a three-dimensional (3D) density matrix, typically derived from computer tomographic (CT) data. Energy lost by the electrons along their paths through the absorber is scored in a 3D dose matrix. Transport of secondary electrons and bremsstrahlung photons is taken into account. Major modifications of the original implementation of the MMC algorithm have resulted in an improved version of the code, resolving earlier problems with electron transport across interfaces of different materials, and running at a substantially higher speed. Furthermore, the code has been integrated into a clinical 3D treatment planning system. MMC results are in good agreement with results from conventional MC codes and are obtained with a speed gain of about one order of magnitude for clinically relevant irradiation situations. Calculation times to obtain a relative statistical accuracy of 2% per dose grid voxel for small electron field sizes are short enough to be routinely useful in radiotherapy clinics on present day affordable workstation computers. Considering speed, accuracy and memory requirements, MMC is a promising alternative to currently available electron dose planning algorithms.

PubMed Disclaimer

Publication types

LinkOut - more resources