Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Apr;153(4):313-24.
doi: 10.1111/j.1748-1716.1995.tb09869.x.

Physiological characteristics of two extreme muscle compartments in gastrocnemius medialis of the anaesthetized rat

Affiliations

Physiological characteristics of two extreme muscle compartments in gastrocnemius medialis of the anaesthetized rat

C J De Ruiter et al. Acta Physiol Scand. 1995 Apr.

Abstract

Rat medial gastrocnemius (GM) muscle is a compartmentalized muscle. The functional properties and fibre type composition of the most proximal and most distal compartment were studied in in situ preparations. The proximal compartment contained predominantly fast twitch oxidative fibres. The distal compartment was mainly composed of fast twitch glycolytic fibres. With the use of two small electrodes placed around the primary nerve branches, both compartments could be separately stimulated within the same muscle. The length-force relationship was less broad and maximal twitch and tetanic forces were obtained at lower muscle lengths for the proximal compartment. The differences (mm) were 0.9 +/- 0.2 and 1.2 +/- 0.2 for maximal twitch and tetanic force (120 Hz) production, respectively (P < 0.001). The shortening velocity for maximal power production was lower (P < 0.001) for the proximal compartment (proximal: 57.1 +/- 2.7 mm s-1, distal: 73.1 +/- 3.0 mm s-1). During a standard fatigue test the fatiguability was significantly lower for the proximal compared with the distal fibres. Our findings suggest that the proximal compartment is likely to be activated in vivo during activities requiring relatively low power outputs for longer time periods. In contrast the distal compartment is probably recruited only during high power demanding short lasting activities. The presented model makes it possible to study fatigue related changes in power production of the 'red' and 'white' areas of the GM separately in a way that is probably meaningful with respect to in vivo function.

PubMed Disclaimer

LinkOut - more resources