Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Mar;114(6):1110-6.
doi: 10.1111/j.1476-5381.1995.tb13322.x.

Endothelin ETA and ETB mRNA and receptors expressed by smooth muscle in the human vasculature: majority of the ETA sub-type

Affiliations
Comparative Study

Endothelin ETA and ETB mRNA and receptors expressed by smooth muscle in the human vasculature: majority of the ETA sub-type

A P Davenport et al. Br J Pharmacol. 1995 Mar.

Abstract

1. We measured the ratio of ETA and ETB sub-types in the media (containing mainly smooth muscle) of human cardiac arteries (aorta, pulmonary and coronary), internal mammary arteries and saphenous veins. 2. In saturation experiments, [125I]-endothelin-1 ([125I]-ET-1) bound with high affinity to the media of each vessel (n = 3 individuals or homogenate preparations +/- s.e. mean): coronary artery, KD = 0.14 +/- 0.02 nM, Bmax = 71.0 +/- 21.0 fmol mg-1 protein; pulmonary artery, KD = 0.85 +/- 0.25 nM, Bmax = 15.2 +/- 10.3 fmol mg-1 protein; aorta, KD = 0.51 +/- 0.02 nM, Bmax = 9.4 +/- 4.4 fmol mg-1 protein; internal mammary artery. KD = 0.34 +/- 0.31 nM, Bmax = 2.0 +/- 0.5 fmol mg-1 protein and saphenous vein, KD = 0.28 +/- 0.05 nM, Bmax = 52.8 +/- 1.0 fmol mg-1 protein. In each vessel, over the concentration-range tested, Hill slopes were close to unity and a one site fit was preferred to a two site model. 3. In competition binding assays, the ETA selective ligand, BQ123 inhibited the binding of 0.1 nM [125I]-ET-1 to the media in a biphasic manner. In each case, a two site fit was preferred to a one or three site model: coronary artery, KDETA = 0.85 +/- 0.03 nM, KDETB = 7.58 +/- 2.27 microM, ratio = 89:11%; pulmonary artery, KDETA = 0.27 +/- 0.05 nM, KDETB = 24.60 +/- 5.34 microM, ratio = 92:8%; aorta, KDETA = 0.80 +/- 0.40 nM, KDETB = 2.67 +/- 2.60 microM ratio = 89:11%; saphenous vein, KDETA = 0.55 +/- 0.17 nM, KDETB = 14.4 +/- 0.26 microM, 85:15% (n = 3 individuals or homogenate preparations +/- s.e. mean). BQ123 showed up to 18000 fold selectivity for the ETA over the ETB sub-type. The ETA-selective ligand, [125I]-PD151242 labelled 85% of the receptors detected by a fixed concentration of [125I]-ET-1 in media of internal mammary artery, measured by quantitative autoradiography. In contrast, the density of ETB receptors detected with [125I]-BQ3020 was 7.0 +/- 1.5 amol mm-2, representing about 8% of [125I]-ET-1. 4. A single band corresponding to the expected position for mRNA encoding the ETA receptor (299 base pairs) was found in the media in each of the five vessels (n = 3 individuals) using reverse transcript as epolymerase chain reaction assays. A single band corresponding to the ETB sub-type (428 base pairs) was also always detected.5. 35S-labelled antisense probes to ETA and ETB hybridised to the media of epicardial coronary arteries as well as intramyocardial vessels, confirming the presence of mRNA encoding both sub-types in the vascular smooth muscle of the vessel wall.6 Although mRNA for both receptors was detected, competition binding using BQ123 demonstrated that the majority (at least 85%) of ET receptors present in smooth muscle are the ETA sub-type. These results provide further support for the hypothesis that the ETA sub-type is the receptor that must be blocked in humans to produce a beneficial vasodilatation in pathophysiological conditions where there is an increase in peptide concentration or receptor density.

PubMed Disclaimer

References

    1. Br J Pharmacol. 1995 Jan;114(2):297-302 - PubMed
    1. Br J Pharmacol. 1992 Nov;107(3):637-9 - PubMed
    1. Br J Pharmacol. 1992 Dec;107(4):912-8 - PubMed
    1. J Clin Endocrinol Metab. 1992 Dec;75(6):1545-9 - PubMed
    1. Biochem Biophys Res Commun. 1992 Jul 31;186(2):867-73 - PubMed

Publication types

LinkOut - more resources