Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Aug;58(2):230-9.
doi: 10.1006/gyno.1995.1216.

Development and characterization of an IL-4-secreting human ovarian carcinoma cell line

Affiliations
Free article
Comparative Study

Development and characterization of an IL-4-secreting human ovarian carcinoma cell line

A D Santin et al. Gynecol Oncol. 1995 Aug.
Free article

Abstract

Human ovarian carcinoma cell lines were genetically engineered to secrete the cytokine interleukin-4 (IL-4) by retroviral-mediated gene transduction. These cells were transduced with the LXSN retroviral vector containing the human IL-4 gene and the neomycin resistance selection marker. Numerous IL-4-secreting clones were isolated from different papillary serous carcinoma cell lines, including SKOV-3, UCI-101, and UCI-107, and one clone derived from UCI-107 extensively characterized. This clone, termed UCI 107E IL-4 GS, was shown to constitutively express high levels of IL-4 (i.e., 900 to 1300 pg/ml/10(5) cells/48 hr) for over 35 passages and 6 months of study. Like the parental cell line (UCI-107), UCI 107E IL-4 GS cells expressed MHC class I and Her-2/neu surface antigens but did not express detectable MHC class II, ICAM 1, CA 125, or IL-4 receptors. No increase in expression of surface proteins was noted between parental and UCI 107E IL-4 GS. The morphology of this clone did not differ from that of the parental or LXSN vector control cells; however, parental cells had a faster growth rates than transductants. UCI 107E IL-4 GS was sensitive to gamma irradiation since as little as 2500 rad killed most of the cells within 10 days of irradiation. However, after irradiation, IL-4 secretion continued until about Day 8. The potential use of these IL-4-secreting ovarian carcinoma cells as vaccines for woman with advanced ovarian cancer will be discussed.

PubMed Disclaimer

Publication types

MeSH terms