Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul;15(7 Pt 1):4970-81.
doi: 10.1523/JNEUROSCI.15-07-04970.1995.

Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells

Affiliations

Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells

R A Segal et al. J Neurosci. 1995 Jul.

Abstract

In the developing cerebellum, young granule neurons in the external germinal layer respond preferentially to BDNF, while mature neurons within the inner portion of the cerebellum respond preferentially to NT3. Here we show that this anatomic distinction reflects a developmentally regulated switch at the level of neurotrophin receptor gene expression. The salient feature of the developmental switch is a change in the ration of mRNA transcripts encoding functional BDNF and NT3 receptor tyrosine kinases. The ratio of the BDNF receptor trkB to the NT3 receptor trkC reverses from 5:1 in neonatal cerebellum to 1:3 in adult cerebellum. TrkB and TrkC are closely related transmembrane tyrosine protein kinases. However, activation of BDNF and NT3 receptors in cerebellar granule neurons do not give equivalent biological responses. In aggregate cell culture and single cell assays, BDNF enhances axonal outgrowth of early granule cells by influencing neurite elongation. In contrast, NT3 alters the morphology of outgrowth. Collectively, these findings suggest that regulation of neurotrophin receptors during cerebellar development is important for the timing and morphology of axonal growth.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources