Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul;15(7 Pt 2):5179-91.
doi: 10.1523/JNEUROSCI.15-07-05179.1995.

Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina

Affiliations

Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina

C L Poitry-Yamate et al. J Neurosci. 1995 Jul.

Abstract

The nature of fuel molecules trafficking between mammalian glial cells and neurons was explored using acute retinal cell preparations of solitary Müller glial cells, Müller cells still attached to photoreceptors (the "cell complex"), and solitary photoreceptors. 14C-Molecules in the cell complex, Müller cells, and respective baths were quantitated following 30 min incubation in bicarbonate-buffered Ringer's solution carrying 5 mM 14C(U)-glucose, and substrate preference by solitary photoreceptors was assessed by measuring 14CO2 production. Müller cells alone metabolized 14C-glucose predominantly to carbohydrate intermediates, while the presence of photoreceptors raised proportionately the amount of radiolabeling in amino acids. 14C-Lactate was the major carbohydrate found in the bath. However, in the presence of photoreceptors, its amount was 70% less than that for Müller cells alone. This decrease matched the expected production of 14CO2 by photoreceptor oxidative metabolism and was antagonized by the addition of unlabeled lactate. Moreover, while solitary photoreceptors consumed both exogenous 14C-lactate and 14C-glucose, lactate was a better substrate for their oxidative metabolism. In the cell complex, the metabolism of amino acids increased and illumination affected primarily glutamate and glutamine production: the specific activity of glutamate changed in parallel with that of lactate, and that of glutamine increased by eightfold in darkness. These results demonstrate transfer of lactate from Müller cells to photoreceptors and underscore a photoreceptor-dependent modulation of lactate and amino acid metabolism. We propose that net production and release of lactate by Müller cells serves to maintain their glycolysis elevated and to fuel mitochondrial oxidative metabolism and glutamate resynthesis in photoreceptors.

PubMed Disclaimer

Publication types

LinkOut - more resources