Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria
- PMID: 7623661
- DOI: 10.1111/j.1365-2958.1995.tb02280.x
Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria
Abstract
CcpA, the repressor/activator mediating carbon catabolite repression and glucose activation in many Gram-positive bacteria, has been purified from Bacillus megaterium after fusing it to a His tag. CcpA-his immobilized on a Ni-NTA resin specifically interacted with HPr phosphorylated at seryl residue 46. HPr, a phospho-carrier protein of the phosphoenolpyruvate: glycose phosphotransferase system (PTS), can be phosphorylated at two different sites: (i) at His-15 in a PEP-dependent reaction catalysed by enzyme I of the PTS; and (ii) at Ser-46 in an ATP-dependent reaction catalysed by a metabolite-activated protein kinase. Neither unphosphorylated HPr nor HPr phosphorylated at His-15 nor the doubly phosphorylated HPr bound to CcpA. The interaction with seryl-phosphorylated HPr required the presence of fructose 1,6-bisphosphate. These findings suggest that carbon catabolite repression in Gram-positive bacteria is a protein kinase-triggered mechanism. Glycolytic intermediates, stimulating the corresponding protein kinase and the P-ser-HPr/CcpA complex formation, provide a link between glycolytic activity and carbon catabolite repression. The sensitivity of this complex formation to phosphorylation of HPr at His-15 also suggests a link between carbon catabolite repression and PTS transport activity.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
