Glutamate: a major neuroendocrine excitatory signal mediating steroid effects on gonadotropin secretion
- PMID: 7626474
- DOI: 10.1016/0960-0760(95)00070-g
Glutamate: a major neuroendocrine excitatory signal mediating steroid effects on gonadotropin secretion
Abstract
The preovulatory gonadotropin surge is induced by progesterone in the cycling female rat or in the ovariectomized estrogen-treated female rat after adequate estrogen-priming activity is present. The source of progesterone under physiological conditions could be the ovary and/or the adrenal. Since the GnRH neuron does not possess estrogen and progesterone receptors, its function is modulated by other CNS neurotransmitters and neurosecretory products. Among these, excitatory amino acids (EAAs) have now been shown to play an important role in the regulation of pulsatile gonadotropin release, induction of puberty and preovulatory and steroid-induced gonadotropin surges. Glutamate, the major endogenous EAA exerts its action through ionotropic and metabotropic receptors. The ionotropic receptors consist of two major classes, the NMDA (N-methyl-D-aspartate) and non-NMDA: kainate and AMPA (DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. EAA receptors are found in hypothalamic areas involved with reproduction. While both NMDA and non-NMDA receptors are involved in the regulation of LH secretion, the NMDA receptors appear to be involved with the regulation of puberty and FSH secretion as well. Steroids increase the release rates of glutamate and aspartate in the preoptic area during the gonadotropin surge. Steroids may also regulate the hypothalamic AMPA receptors.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources