Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul 25;34(29):9341-9.
doi: 10.1021/bi00029a009.

Insulin-stimulated phosphorylation of recombinant pp120/HA4, an endogenous substrate of the insulin receptor tyrosine kinase

Affiliations

Insulin-stimulated phosphorylation of recombinant pp120/HA4, an endogenous substrate of the insulin receptor tyrosine kinase

S M Najjar et al. Biochemistry. .

Abstract

Insulin binding to the alpha-subunit of its receptor stimulates the receptor tyrosine kinase to phosphorylate the beta-subunit and several endogenous protein substrates, including pp120/HA4, a liver-specific plasma membrane glycoprotein of M(r) 20,000. Analysis of the deduced amino acid sequence of rat liver pp120/HA4 revealed two potential sites for tyrosine phosphorylation in the cytoplasmic domain (Tyr488 and Tyr513), as well as a potential cAMP-dependent protein kinase phosphorylation site (Ser503). To determine which of these sites is phosphorylated in response to insulin, each of these amino acid residues was altered by site-directed mutagenesis. Mutant cDNAs were then expressed by stable transfection in NIH 3T3 cells. Two mutations (Phe488 and Ala503) impaired insulin-induced phosphorylation of pp120/HA4, suggesting that pp120/HA4 undergoes multisite phosphorylation. It seems likely that Tyr488 is phosphorylated by the insulin receptor kinase, and phosphorylation of Ser513 may contribute to the regulation of tyrosine phosphorylation. Since pp120/HA4 is believed to be associated with a Ca2+/Mg(2+)-dependent ecto-ATPase activity, we determined the effects of insulin-induced phosphorylation on this enzymatic activity. In NIH 3T3 cells co-expressing the insulin receptor and pp120/HA4, insulin caused a 2-fold increase in ecto-ATPase activity. Moreover, elimination of the phosphorylation sites of pp120/HA4 impaired the ability of insulin to stimulate the ecto-ATPase activity. These data suggest that tyrosine phosphorylation of pp120/HA4 may regulate Ca2+/Mg(2+)-dependent ecto-ATPase activity.

PubMed Disclaimer

MeSH terms