Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug 4;270(31):18309-12.

Reaction mechanism of L-2-haloacid dehalogenase of Pseudomonas sp. YL. Identification of Asp10 as the active site nucleophile by 18O incorporation experiments

Affiliations
  • PMID: 7629151
Free article

Reaction mechanism of L-2-haloacid dehalogenase of Pseudomonas sp. YL. Identification of Asp10 as the active site nucleophile by 18O incorporation experiments

J Q Liu et al. J Biol Chem. .
Free article

Abstract

L-2-Haloacid dehalogenase (EC 3.8.1.2) catalyzes the hydrolytic dehalogenation of L-2-haloacids to produce the corresponding D-2-hydroxy acids. We have analyzed the reaction mechanism of the enzyme from Pseudomonas sp. YL and found that Asp10 is the active site nucleophile. When the multiple turnover enzyme reaction was carried out in H2(18)O with L-2-chloropropionate as a substrate, lactate produced was labeled with 18O. However, when the single turnover enzyme reaction was carried out by use of a large excess of the enzyme, the product was not labeled. This suggests that an oxygen atom of the solvent water is first incorporated into the enzyme and then transferred to the product. After the multiple turnover reaction in H2(18)O, the enzyme was digested with lysyl endopeptidase, and the molecular masses of the peptide fragments formed were measured by an ionspray mass spectrometer. Two 18O atoms were shown to be incorporated into a hexapeptide, Gly6-Lys11. Tandem mass spectrometric analysis of this peptide revealed that Asp10 was labeled with two 18O atoms. Our previous site-directed mutagenesis experiment showed that the replacement of Asp10 led to a significant loss in the enzyme activity. These results indicate that Asp10 acts as a nucleophile on the alpha-carbon of the substrate leading to the formation of an ester intermediate, which is hydrolyzed by nucleophilic attack of a water molecule on the carbonyl carbon atom.

PubMed Disclaimer

Publication types

LinkOut - more resources