Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug 11;82(3):415-24.
doi: 10.1016/0092-8674(95)90430-1.

Decoding of cytosolic calcium oscillations in the mitochondria

Affiliations
Free article

Decoding of cytosolic calcium oscillations in the mitochondria

G Hajnóczky et al. Cell. .
Free article

Abstract

Frequency-modulated oscillations of cytosolic Ca2+ ([Ca2+]c) are believed to be important in signal transduction, but it has been difficult to correlate [Ca2+]c oscillations directly with the activity of Ca(2+)-regulated targets. We have studied the control of Ca(2+)-sensitive mitochondrial dehydrogenases (CSMDHs) by monitoring mitochondrial Ca2+ ([Ca2+]m) and the redox state of flavoproteins and pyridine nucleotides simultaneously with [Ca2+]c in single hepatocytes. Oscillations of [Ca2+]c induced by IP3-dependent hormones were efficiently transmitted to the mitochondria as [Ca2+]m oscillations. Each [Ca2+]m spike was sufficient to cause a maximal transient activation of the CSMDHs and [Ca2+]m oscillations at frequencies above 0.5 per minute caused a sustained activation of mitochondrial metabolism. By contrast, sustained [Ca2+]c increases yielded only transient CSMDH activation, and slow or partial [Ca2+]c elevations were ineffective in increasing [Ca2+]m or stimulating CSMDHs. We conclude that the mitochondria are tuned to oscillating [Ca2+]c signals, the frequency of which can control the CSMDHs over the full range of potential activities.

PubMed Disclaimer

Publication types

LinkOut - more resources