Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug;177(15):4508-13.
doi: 10.1128/jb.177.15.4508-4513.1995.

Fine-structure deletion analysis of the transcriptional silencer of the proU operon of Salmonella typhimurium

Affiliations

Fine-structure deletion analysis of the transcriptional silencer of the proU operon of Salmonella typhimurium

S A Fletcher et al. J Bacteriol. 1995 Aug.

Abstract

Transcriptional control of the osmotically regulated proU operon of Salmonella typhimurium is mediated in part by a transcriptional silencer downstream from the promoter (D.G. Overdier and L.N. Csonka, Proc. Natl. Acad. Sci. USA 89:3140-3144, 1992). We carried out a fine-structure deletion analysis to determine the structure and the position of the silencer, which demonstrated that this regulatory element is located between nucleotide positions +73 to +274 downstream from the transcription start site. The silencer appears to be made up of a number of components which have cumulative negative regulatory effects. Deletions or insertions of short nucleotide sequences (< 40 bp) between the proU promoter and the silencer do not disrupt repression exerted by the silencer, but long insertions (> or = 0.8 kbp) result in a high level of expression from the proU promoter, similar to that imparted by deletion of the entire silencer. The general DNA-binding protein H-NS is required for the full range of repression of the proU operon in media of low osmolality. Although in the presence of the silencer hns mutations increased basal expression from the proU promoter three- to sixfold, in the absence of the silencer they did not result in a substantial increase in basal expression from the proU promoter. Furthermore, deletion of the silencer in hns+ background was up to 10-fold more effective in increasing basal expression from the proU promoter than the hns mutations. These results indicate that osmotic control of the proU operon is dependent of some factor besides H-NS. We propose that the transcriptional regulation of this operon is effected in media of low osmolality by a protein which makes the promoter inaccessible to RNA polymerase by forming a complex containing the proU promoter and silencer.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 - PubMed
    1. J Bacteriol. 1994 Nov;176(21):6769-75 - PubMed
    1. J Bacteriol. 1987 Jun;169(6):2449-59 - PubMed
    1. Gene. 1987;53(1):85-96 - PubMed
    1. Cell. 1988 Feb 26;52(4):569-84 - PubMed

Publication types

MeSH terms

LinkOut - more resources