The specificity of p53 mutation spectra in sunlight induced human cancers
- PMID: 7636632
- DOI: 10.1016/1011-1344(95)07130-t
The specificity of p53 mutation spectra in sunlight induced human cancers
Abstract
Ultraviolet (UV) irradiation emitted by the sun has been clearly implicated as a major carcinogen in the formation of skin cancers in man. Indeed, the high levels of cutaneous tumors in xeroderma pigmentosum patients (XP) who are deficient in repair of UV-induced lesions have confirmed that DNA damage produced by sunlight is directly involved in the cancer development. The tumor suppressor gene, p53, very frequently found modified in human cancers, has proved to be a perfect target gene for correlating mutation spectra with different cancer causing agents as there are nearly 300 potential mutation sites available for analysis. In a comparative analysis of p53 mutations found in internal cancers with those in skin tumours we show here that clear differences exist between the types of spectra obtained. The specificity of UV induced mutations in skin cancers is confirmed when single and tandem mutations are compared. Most of the p53 point mutations found are GC to AT transitions both in skin and internal tumors where in the latter they are located mainly at CpG sequences probably due to the deamination of the unstable 5-MeC. Moreover, mutations are targeted at py-py sequences in over 90% of skin tumors whereas in internal cancers the distribution is proportional to the frequency of bipyrimidine sequences in the p53 gene. Most significantly, all mutations found in XP skin tumors are targeted at py-py sites and more than 50% are tandem CC to TT transitions considered as veritable signatures of UV-induced lesions. Tandem mutations are also relatively common (14%) in skin tumors from normal individuals compared to their very rare occurrence in internal malignancies (0.8%). Finally, nearly all mutations observed in XP skin tumors are due to unrepaired lesions remaining on the coding strand whereas no strand bias is seen in mutation location of internal or skin tumors from normal individuals. In fact the mutation spectrum analysed in XP skin cancers has permitted the first demonstration of the existence of preferential repair in man. In conclusion, using the p53 gene as a probe it is obvious that the mutation spectra from skin tumors are very similar to those observed in UV-treated gene targets in model systems but statistically different from those described in other types of human cancer. This has allowed us to demonstrate, without ambiguity, the major role of UV-induced DNA lesions in sunlight related skin carcinogenesis.
Similar articles
-
Can we predict solar ultraviolet radiation as the causal event in human tumours by analysing the mutation spectra of the p53 gene?Mutat Res. 1994 May 1;307(1):375-86. doi: 10.1016/0027-5107(94)90311-5. Mutat Res. 1994. PMID: 7513818 Review.
-
Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients.Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10529-33. doi: 10.1073/pnas.90.22.10529. Proc Natl Acad Sci U S A. 1993. PMID: 8248141 Free PMC article.
-
The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors.Mutat Res. 2005 Apr 1;571(1-2):43-56. doi: 10.1016/j.mrfmmm.2004.11.013. Epub 2005 Jan 25. Mutat Res. 2005. PMID: 15748637 Review.
-
Xeroderma pigmentosum and skin cancer.Adv Exp Med Biol. 2008;637:19-27. doi: 10.1007/978-0-387-09599-8_3. Adv Exp Med Biol. 2008. PMID: 19181107 Review.
-
UV-induced DNA damage in carcinogenesis and its repair.J Dermatol Sci. 2000 Mar;23 Suppl 1:S41-4. doi: 10.1016/s0923-1811(99)00079-1. J Dermatol Sci. 2000. PMID: 10764991
Cited by
-
[Socio-legal evaluation of UV-induced skin tumors].Hautarzt. 2005 Aug;56(8):759-67. doi: 10.1007/s00105-004-0883-4. Hautarzt. 2005. PMID: 15657735 German.
-
Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site.Mol Oncol. 2008 Apr;1(4):395-405. doi: 10.1016/j.molonc.2007.12.003. Epub 2007 Dec 28. Mol Oncol. 2008. PMID: 19383313 Free PMC article.
-
Melanoma: from mutations to medicine.Genes Dev. 2012 Jun 1;26(11):1131-55. doi: 10.1101/gad.191999.112. Genes Dev. 2012. PMID: 22661227 Free PMC article. Review.
-
Dynamics and mechanisms of DNA repair by photolyase.Phys Chem Chem Phys. 2015 May 14;17(18):11933-49. doi: 10.1039/c4cp05286b. Phys Chem Chem Phys. 2015. PMID: 25870862 Free PMC article. Review.
-
Presumed Pathogenic Germ Line and Somatic Variants in African American Thyroid Cancer.Thyroid. 2024 Mar;34(3):378-387. doi: 10.1089/thy.2023.0487. Epub 2024 Jan 18. Thyroid. 2024. PMID: 38062767 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous