Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Aug;79(2):212-8.
doi: 10.1213/00000539-199408000-00002.

Experimental hypothermia: effects of core cooling and rewarming on hemodynamics, coronary blood flow, and myocardial metabolism in dogs

Affiliations

Experimental hypothermia: effects of core cooling and rewarming on hemodynamics, coronary blood flow, and myocardial metabolism in dogs

T Tveita et al. Anesth Analg. 1994 Aug.

Abstract

Conflicting results have been reported as to the extent that cardiovascular function can be reestablished after rewarming from hypothermia. We measured hemodynamic function, myocardial metabolism and tissue water content in dogs core-cooled to 25 degrees C and later rewarmed. At 25 degrees C left ventricular (LV) systolic pressure (LVSP) was 54% +/- 4%, maximum rate of LV pressure rise (LV dP/dtmax) 44% +/- 5%, aortic pressure (AOP) 50% +/- 6%, heart rate (HR) 40% +/- 0%, cardiac output (CO) 37% +/- 5%, myocardial blood flow (MBF) 34% +/- 5%, and myocardial oxygen consumption (MVO2) 8% +/- 1%, compared to precooling. Stroke volume (SV) and LV end-diastolic pressure (LVEDP) were unchanged. As normothermia (37 degrees C) was reestablished, the depression of cardiac function and myocardial metabolism remained the same as that at 25 degrees C: LVSP 71% +/- 6%, LV dP/dtmax 73% +/- 7%, SV 60% +/- 9%, AOP 70% +/- 6%, CO 57% +/- 9%, MBF 53% +/- 8%, and MVO2 44% +/- 8% HR, in contrast, recovered to precooling values. The arterial concentrations of glucose and free fatty acids (FFA) did not change significantly during the experimental period, whereas an increase in lactate of nonmyocardial origin appeared after rewarming. Increased myocardial contents of creatine phosphate and water were found during both hypothermia and rewarming. The present study demonstrates a persistent depression of cardiac function after hypothermia and rewarming in spite of adequate energy stores. Thus, a direct influence on myocardial contractile function by the cooling and rewarming process is suggested.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources