Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Jan-Feb;329(1):161-84.

Tachykinin receptors and receptor subtypes

Affiliations
  • PMID: 7639617
Review

Tachykinin receptors and receptor subtypes

R Patacchini et al. Arch Int Pharmacodyn Ther. 1995 Jan-Feb.

Abstract

The tachykinins, substance P, neurokinin A and neurokinin B, are a family of neuropeptides widely distributed in the mammalian central and peripheral nervous system. In the peripheral nervous system, tachykinins released from peripheral endings of sensory nerves are responsible for the neurogenic inflammation phenomenon. In the spinal cord/central nervous system, tachykinins play a role in pain transmission/perception and in some autonomic reflexes and behaviors. Their actions are mediated by three distinct receptors, termed NK1, NK2 and NK3. All tachykinin receptors belong to the superfamily of G protein-coupled receptors, with seven putative transmembrane spanning segments. In the past few years, a number of potent and selective antagonists, of both peptide and nonpeptide nature, has been developed for the NK1, NK2 and NK3 receptors. The contemporary isolation and cloning of the three tachykinin receptors enable now to study the molecular determinants for the interaction of natural tachykinins with their receptors, and the mechanism by which the antagonists interfere in this process. Furthermore, the introduction of tachykinin antagonists has revealed a striking species-related heterogeneity among the tachykinin receptors, and has also suggested a possible intra-species heterogeneity for both NK1 and NK2 receptors. However, molecular biology studies are needed to prove the existence of true tachykinin receptor subtypes.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources