Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug 1;14(15):3712-20.
doi: 10.1002/j.1460-2075.1995.tb00041.x.

Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system

Affiliations

Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system

E Kruse et al. EMBO J. .

Abstract

A full-length cDNA sequence encoding coproporphyrinogen oxidase was inserted in inverse orientation behind a CaMV promoter and transferred to tobacco (Nicotiana tabacum) by standard transformation techniques. Transformants showed reduced coproporphyrinogen oxidase activity and accumulation of photosensitive coproporphyrin(ogen), indicating antisense RNA expression. An inverse correlation was observed between the level of coproporphyrinogen oxidase and transformant phenotype. The latter is characterized by a broad range of growth retardation and necrosis, indicating oxidative leaf damage. Coproporphyrinogen is an apparent chromophore and its excitation finally leads to the production of reactive oxygen. Evidence is presented that indicates a direct correlation between the accumulation of non-metabolized coproporphyrinogen and oxidative damage to cellular structural components. Enzymatic and non-enzymatic antioxidants were investigated. Whereas superoxide dismutase activity increased in transgenic plants, catalase and ascorbate peroxidase activity remained constant. Tocopherol, rather than carotene or zeaxanthin, seemed to be involved in detoxification, indicating the putative localization and allocation of coproporphyrinogen. Expression of coproporphyrinogen oxidase antisense RNA did not significantly influence the level of other enzymes in the chlorophyll metabolic pathway, but deregulated gene expression of nuclear encoded plastid proteins. Accumulation of coproporphyrinogen and/or the resulting effects, such as oxidative stress, impairs a plastid/nuclear signal which may adapt gene expression to the plastid state.

PubMed Disclaimer

References

    1. Plant Mol Biol. 1995 May;28(2):245-56 - PubMed
    1. Planta. 1995;196(4):796-803 - PubMed
    1. Plant Physiol. 1989 Jul;90(3):1175-81 - PubMed
    1. Z Naturforsch B. 1970 Jul;25(7):718-28 - PubMed
    1. Plant Physiol. 1993 Dec;103(4):1413-1420 - PubMed

Publication types

MeSH terms