Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug 11;270(32):18831-5.
doi: 10.1074/jbc.270.32.18831.

Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli

Affiliations

Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli

J Fukuchi et al. J Biol Chem. .

Abstract

Physiological functions of spermidine acetyltransferase in Escherichia coli have been studied using the spermidine acetyltransferase (speG) gene-deficient mutant CAG2242 and the cloned speG gene. The growth of E. coli CAG2242 in the defined M9 medium was normal in the presence and absence of 0.5mM spermidine. However, cell viability of E. coli CAG2242 at 48 h after the onset of growth decreased greatly by the addition of 0.5 mM spermidine. The amount of spermidine accumulated in the cells was approximately 3-fold that in the cells grown in the absence of spermidine. Transformation of the cloned speG gene to E. coli CAG2242 recovered the cell viability. Decreased in cell viability of E. coli CAG2242 was observed even when 0.5mM spermidine was added at 24 h after the onset of growth. The results indicate that accumulated spermidine functions at the late stationary phase of growth. The accumulation of spermidine caused a decrease in protein synthesis but not in DNA and RNA synthesis at 28 h after the onset of growth. The synthesis of several kinds of proteins was particularly inhibited. They included ribosome modulation factor and OmpC protein. Since the ribosome modulation factor is essential for cell viability at the stationary phase of growth (Yamagishi, M., Matsushima, H., Wada, A., Sakagami, M., Fujita, N., and Ishihama, A. (1993) EMBO J. 12, 625-630), the decrease in the protein was thought to be one of the reasons for the decrease in cell viability. The decrease in the ribosome modulation factor mainly occurred at the translational level.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources