Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug 18;270(33):19320-4.
doi: 10.1074/jbc.270.33.19320.

Characterization of a Ca2+/calmodulin-dependent protein kinase cascade. Molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase

Affiliations
Free article

Characterization of a Ca2+/calmodulin-dependent protein kinase cascade. Molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase

H Tokumitsu et al. J Biol Chem. .
Free article

Abstract

Recent studies have demonstrated that Ca2+/calmodulin-dependent protein kinase IV (CaM-kinase IV) can mediate Ca(2+)-dependent regulation of gene expression through the phosphorylation of transcriptional activating proteins. We have previously identified and purified a 68-kDa rat brain CaM-kinase kinase that phosphorylates and increases total and Ca(2+)-independent activities of CaM-kinase IV (Tokumitsu, H., Brickey, D. A., Gold, J., Hidaka, H., Sikela, J., and Soderling, T. R. (1994) J. Biol. Chem. 269, 28640-28647). Using a partial amino acid sequence of the purified brain kinase, a CaM-kinase kinase cDNA was cloned from a rat brain cDNA library. Northern blot analysis showed that CaM-kinase kinase mRNA (3.4 kilobases) was expressed in rat brain, thymus, and spleen. Sequence analyses revealed that the cDNA encoded a 505-amino acid protein, which contained consensus protein kinase motifs and was 30-40% homologous with members of the CaM-kinase family. Expression of the cDNA in COS-7 cells yielded an apparent 68-kDa CaM-binding protein, which catalyzed in vitro activation in the presence of Mg2+/ATP and Ca2+/ CaM of CaM-kinases I and IV but not of CaM-kinase II. Co-expression of CaM-kinase kinase with CaM-kinase IV gave a 14-fold enhancement of cAMP-response element-binding protein-dependent gene expression compared with CaM-kinase IV alone. These results are consistent with the hypothesis that CaM-kinases I and IV are regulated through a unique signal transduction cascade involving CaM-kinase kinase.

PubMed Disclaimer

Publication types

Substances

Associated data

LinkOut - more resources