Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Sep;65(3):1395-8.
doi: 10.1046/j.1471-4159.1995.65031395.x.

Opposite effect of protein synthesis inhibitors on potassium deficiency-induced apoptotic cell death in immature and mature neuronal cultures

Affiliations

Opposite effect of protein synthesis inhibitors on potassium deficiency-induced apoptotic cell death in immature and mature neuronal cultures

E Kharlamov et al. J Neurochem. 1995 Sep.

Abstract

Typically, primary cultures of rat cerebellar granule neurons are grown in the presence of 25 mM KCl and are considered to mature by approximately 7 days in vitro. Potassium deficiency was created by growing the neurons from days 1 to 4 in the presence of 12.5 mM KCl (immature cultures) or by switching the mature neurons grown with 25 mM KCl to 12.5 mM KCl. In both conditions we observed neuronal death that bears the signs of apoptosis, i.e., DNA fragmentation determined qualitatively by agarose gel electrophoresis of DNA and quantitatively by in situ terminal deoxynucleotidyl transferase assay. The protein synthesis inhibitors cycloheximide and anisomycin provided neuroprotection in the mature cultures but potentiated the toxic effect of KCl deprivation in the immature neurons. The results suggest that a prudent use of protein synthesis inhibitors is critical in experiments with primary neuronal cultures.

PubMed Disclaimer

Publication types

LinkOut - more resources