Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Apr;73(4):1414-21.
doi: 10.1152/jn.1995.73.4.1414.

Direction biases of X and Y type retinal ganglion cells in the cat

Affiliations

Direction biases of X and Y type retinal ganglion cells in the cat

T Shou et al. J Neurophysiol. 1995 Apr.

Abstract

1. It has been reported that in the cat only a specialized group of retinal ganglion cells constituting approximately 1% of the overall population are direction sensitive. Two major groups of retinal ganglion cells, the X and Y cells, have been reported not to be sensitive to the direction of stimulus motion. 2. We recorded action potentials of retinal ganglion cells intraocularly. We studied quantitatively the visual responses elicited by drifting sinusoidal gratings of various spatial frequencies, bars, and spots. 3. The results confirm previous reports that most cat retinal ganglion cells exhibit orientation biases when tested with gratings of relatively high spatial frequency. 4. Additionally, we find that 22% of X and 34% of Y type retinal ganglion cells exhibit direction biases. Overall, Y cells displayed significantly stronger direction biases than did X cells. 5. In general, direction biases are clearest when the test gratings are of relatively low spatial frequency. 6. The direction biases of X and Y cells subserving the central 15 degrees of retina were weaker than those of cells subserving more peripheral regions. 7. The direction-biased responses of cat ganglion cells were similar to those of X and Y type relay cells in the cat dorsal lateral geniculate nucleus (LGNd). Thus we suggest that the direction biases of LGNd cells are a reflection of their retinal inputs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources