Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Apr;73(4):1462-7.
doi: 10.1152/jn.1995.73.4.1462.

Laminar pattern of synaptic inhibition during convulsive activity induced by 4-aminopyridine in neocortical slices

Affiliations

Laminar pattern of synaptic inhibition during convulsive activity induced by 4-aminopyridine in neocortical slices

E Barkai et al. J Neurophysiol. 1995 Apr.

Abstract

1. Epileptiform activity was induced in rat neocortical brain slices by application of a low concentration (10 microM) of 4-aminopyridine (4-AP). In intracellular recordings from regular spiking neurons, the activity was characterized by prolonged, all-or-none depolarizing events, with variable delay to a threshold stimulus. 2. At this concentration, 4-AP had no measurable effect on passive electrical properties or on action-potential characteristics. 3. Paroxysmal responses in neurons of deeper layers differed markedly from those of superficial cells. In deep neurons, responses resembled those generated by neocortical neurons exposed to GABAergic blockers. A low-intensity stimulus to the white matter evoked an excitatory postsynaptic potential (EPSP) that was followed with variable latency by a paroxysmal depolarizing shift that reversed at suprathreshold membrane potentials and upon which superimposed repetitive firing was always evident. By contrast, in superficial (layer II-III) neurons, the same stimulus evoked an EPSP that was followed by a prolonged response whose late component reversed at subthreshold membrane potentials (between -50 and -80 mV). These cells rarely fired more than a single spike throughout the response. 4. Repetitive stimulation at relatively low frequencies (0.3-1 Hz) caused a gradual change in the synchronized responses that was most marked in superficial neurons. The reversal potential of the response shifted toward suprathreshold membrane potentials, and subsequently, superimposed repetitive firing became evident. These changes were not associated with measurable changes in input resistance or membrane potential.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources