Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Aug 20;321(2):421-8.
doi: 10.1006/abbi.1995.1413.

Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron donors

Affiliations
Comparative Study

Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron donors

A K Shiemke et al. Arch Biochem Biophys. .

Abstract

Quinols can provide reducing equivalents for the membrane-bound form of methane monooxygenase (pMMO), substituting for NADH in whole cells and membranes. Furthermore, quinols are effective reductants for the detergent-solubilized enzyme, whereas NADH is ineffective. The decyl analog of plastoquinol and duroquinol (2,3,5,6-tetramethylbenzoquinol) provide the greatest methane monooxygenase activity in whole cells and membrane suspensions, as well as detergent-solubilized samples. Lauryl maltoside is by far the best detergent for solubilization of catalytically active methane monooxygenase. Optimal pMMO activity in the detergent-solubilized fraction is obtained with a ratio of approximately 1.7 mg of detergent per milligram of membrane protein, independent of protein concentration. The detergent-solubilized pMMO retains its sensitivity to inhibition by cyanide, acetylene, and EDTA. It is also stimulated by exogenous copper, as in isolated membrane fractions. Reaction of the detergent-solubilized enzyme with [14C]acetylene results in labeling of a 26-kDa peptide, analogous to the behavior observed for isolated membrane suspensions. The selectivity of pMMO for duroquinol and decyl-plastoquinol, relative to other structurally similar quinols, suggests that the enzyme obtains reducing equivalents directly from a quinol (probably plastoquinol) in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources