Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug;60(2):405-10.
doi: 10.1016/0003-4975(95)00400-f.

Protamine induces endothelium-dependent vasodilatation of the pulmonary artery

Affiliations

Protamine induces endothelium-dependent vasodilatation of the pulmonary artery

P R Evora et al. Ann Thorac Surg. 1995 Aug.

Abstract

Background: Protamine sulfate, which is used for heparin neutralization, has been reported to induce catastrophic pulmonary vasoconstriction after infusion. However, in the systemic circulation, protamine infusion induces hypotension due to peripheral vasodilation.

Methods: To determine whether protamine also could induce vasodilation in the pulmonary circulation, third-order canine pulmonary artery segments were studied in vitro in organ chambers.

Results: In pulmonary artery segments that were caused to contract with phenylephrine (10(-5) mol/L), protamine sulfate (40 to 400 micrograms/mL, final organ bath concentration) produced concentration-dependent relaxation in canine pulmonary artery segments with endothelium (to 74% +/- 7% of the initial contraction to phenylephrine) that was significantly greater (p < 0.05) than in segments without endothelium (30% +/- 6% of the initial phenylephrine contraction). Pretreatment of arterial segments with NG-monomethyl-L-arginine (10(-5) mol/L), the competitive inhibitor of nitric oxide synthesis from L-arginine, did not change tension of arterial segments, but NG-monomethyl-L-arginine attenuated the relaxation to protamine. The inhibitory effect of NG-monomethyl-L-arginine could be reversed by the addition of L-arginine (10(-4) mol/L) but not D-arginine (10(-4) mol/L). Endothelium-dependent vasodilation to protamine (40 to 400 micrograms/mL) also could be inhibited by heparin (8 U/mL, final organ bath concentration). However, the inhibitory effect of heparin could be overcome by adding higher concentrations of protamine.

Conclusions: Protamine-mediated pulmonary vasodilatation could be an important mechanism to protect against the constrictive effects of autocoids generated during heparin neutralization. Such a mechanism might be dysfunctional in certain persons and put them at risk for pulmonary vasoconstriction after protamine infusion.

PubMed Disclaimer

Publication types

LinkOut - more resources