Osteoblast-like cell adherance and migration through 3-dimensional porous polymer matrices
- PMID: 7646521
- DOI: 10.1006/bbrc.1995.2179
Osteoblast-like cell adherance and migration through 3-dimensional porous polymer matrices
Abstract
Osteoblast cells collected from rat calvaria were plated onto a biodegradable 3-dimensional porous composite of poly(lactide-co-glycolide) and hydroxyapatite to quantitatively assess the matrix's ability to support living cell adhesion throughout an initial 24 hour period. Numbers of cells adhering to the polymer exceeded the plating number of cells, demonstrating that during the 24 hour period, proliferation of cells began. Using immunofluorescent staining for anti-osteocalcin, an exclusive marker for bone cells, osteoblasts were seen to adhere to both the exterior surface of the polymer and to have migrated to the interior surface of the matrix. It is proposed that this biodegradable cell/polymer composite may be useful in bone grafting applications. These studies demonstrated early cellular attachment, proliferation and ingrowth of osteoblast cells can occur within the matrix, with preservation of bone cell phenotypes.
Similar articles
-
Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material.Biomaterials. 1993;14(4):263-9. doi: 10.1016/0142-9612(93)90116-j. Biomaterials. 1993. PMID: 8386557
-
Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers.Biomaterials. 1998 Aug;19(15):1405-12. doi: 10.1016/s0142-9612(98)00021-0. Biomaterials. 1998. PMID: 9758040
-
Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds.Tissue Eng. 2000 Dec;6(6):605-17. doi: 10.1089/10763270050199550. Tissue Eng. 2000. PMID: 11103082
-
Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-lactide-co-glycolide) copolymers.Eur J Pharm Sci. 2004 Feb;21(2-3):161-9. doi: 10.1016/j.ejps.2003.10.001. Eur J Pharm Sci. 2004. PMID: 14757487
-
Development of artificial blood vessels: seeding and proliferation characteristics of endothelial and smooth muscle cells on biodegradable membranes.Ann N Y Acad Sci. 2002 Jun;961:279-83. doi: 10.1111/j.1749-6632.2002.tb03102.x. Ann N Y Acad Sci. 2002. PMID: 12081918 Review. No abstract available.
Cited by
-
Bone tissue engineering scaffolding: computer-aided scaffolding techniques.Prog Biomater. 2014;3:61-102. doi: 10.1007/s40204-014-0026-7. Epub 2014 Jul 17. Prog Biomater. 2014. PMID: 26798575 Free PMC article. Review.
-
Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells.J Biomed Mater Res A. 2010 Aug;94(2):442-9. doi: 10.1002/jbm.a.32696. J Biomed Mater Res A. 2010. PMID: 20186733 Free PMC article.
-
Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites.Prog Biomater. 2012 Sep 26;1(1):2. doi: 10.1186/2194-0517-1-2. Prog Biomater. 2012. PMID: 29470743 Free PMC article.
-
Biomimetic materials for tissue engineering.Adv Drug Deliv Rev. 2008 Jan 14;60(2):184-98. doi: 10.1016/j.addr.2007.08.041. Epub 2007 Nov 28. Adv Drug Deliv Rev. 2008. PMID: 18045729 Free PMC article. Review.
-
Nanostructured injectable cell microcarriers for tissue regeneration.Nanomedicine (Lond). 2016 Jun;11(12):1611-28. doi: 10.2217/nnm-2016-0083. Epub 2016 May 27. Nanomedicine (Lond). 2016. PMID: 27230960 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources