Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jan 13;15(1):160-8.
doi: 10.1021/bi00646a025.

Conformational changes of transfer RNA. The role of magnesium(II)

Conformational changes of transfer RNA. The role of magnesium(II)

A Stein et al. Biochemistry. .

Abstract

Magnesium ions added to tRNAfMET1 selectively stabilize the dihydrouridine helix-tertiary structural region. Low Mg2+ levels have little direct effect on the remaining three cloverleaf helices, but these are prevented from melting independently when their intrinsic Tm is surpassed by the Tm of the tertiary structure. At high Mg2+ concentration the thermal unfolding of tRNAfMet1 is approximately a two-state, concerted transition from the globular native structure to the random coil, in contrast to the sequential unfolding observed without Mg2+. We interpret the kinetics of refolding to mean that the D helix serves as a required nucleus for the rate-limiting step of tertiary structure formation. We found that unfolding of the tertiary structure leads to loss of the tightly bound Mg2+ ions, and showed with a Mn2+-sensitive fluorescent indicator that the rate of Mn2+ release is the same as the rate of unfolding the tertiary structure. Hence the tightly bound divalent ion must be located in a site formed by the tertiary structure-D helix region of the molecule.

PubMed Disclaimer

Publication types