Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jan 27;15(2):328-34.
doi: 10.1021/bi00647a014.

Randomization of membrane lipids in relation to transport system assembly in Escherichia coli

Randomization of membrane lipids in relation to transport system assembly in Escherichia coli

L Thilo et al. Biochemistry. .

Abstract

The distribution of newly synthesized lipid molecules in the pre-existing lipid phase of the membrane was studied in whole cells of the fatty acid requiring Escheria coli strain K1062. The fluorescence probe N-phenyl-1-naphthylamine revealed reversible lipid phase transitions in cells supplemented with cis-delta9-octadecenoate (transition temperature Tt = 14 degrees C; width of the transition deltaT = 13 degrees C) or trans-delta9-hexadecenoate (Tt = 27 degrees C; deltaT = 7 degrees C). Cells were first grown in the presence of cis-delta9-octadecenoate at 37 degrees C and subsequently for various periods in the presence of trans-delta9-hexadecenoate at 37 or 22 degrees C, i.e. above or below the transition of the newly formed lipids. Reproducible phase transitions with single, well-defined Tt values between 14 and 27 degrees C were observed under both conditions. Beta-Galactoside transport induced in a similar experiment before or during a change in the fatty acid composition showed a single change in activation energy at a temperature close to the lipid transition temperature, Tt. Starvation of cis-delta9-octadecenoate-supplemented cells for this fatty acid led to a gradual rise in the transition temperature, due to an increase in the percentage of saturated acyl chains in the membrane lipids. It is concluded that under all conditions investigated a mixed lipid phase composed of newly synthesized and pre-existing lipid molecules is formed in the membrane. Since conserved domains of newly synthesized lipids surrounding simultaneously formed transport proteins could not be demonstrated, the results do not support a membrane assembly mechanism proposed by N. Tsukagoshi and C. F. Fox [(1973), Biochemistry 12, 2822-2829]. It rather appears that newly formed lipid molecules are continuously released from their sites of synthesis into the lipid matrix by a rapid diffusion-controlled process.

PubMed Disclaimer

MeSH terms

Substances