Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug;269(2 Pt 2):R245-51.
doi: 10.1152/ajpregu.1995.269.2.R245.

Central oxytocin and ANP receptors mediate osmotic inhibition of salt appetite in rats

Affiliations

Central oxytocin and ANP receptors mediate osmotic inhibition of salt appetite in rats

R E Blackburn et al. Am J Physiol. 1995 Aug.

Abstract

These studies evaluated the involvement of central oxytocin (OT) and atrial natriuretic peptide (ANP) receptors in the osmotic inhibition of hypovolemia-induced salt appetite. Rats were pretreated centrally with the A chain of the cytotoxin ricin conjugated to OT (rAOT) or ANP (rAANP) to selectively inactivate cells bearing these respective receptors, or rats were pretreated with the unconjugated A chain (rA) as a control. Hypovolemia was induced with subcutaneous colloid injections, and rats then were given either 2 M mannitol, which raises plasma osmolality but lowers plasma sodium, or 1 M NaCl, which raises both. Hypertonic mannitol inhibited saline ingestion in rA-treated control rats but stimulated ingestion in rAOT- and rAANP-treated rats, whereas hypertonic NaCl blunted saline ingestion in rA- and rAOT-treated rats but stimulated ingestion in rAANP-treated rats. Angiotensin II-induced saline intake was similarly potentiated in rAOT- and rAANP-treated rats, indicating that this treatment also activates central inhibitory OT and ANP pathways. These data suggest that central ANP receptors mediate both Na(+)- and osmolality-induced inhibition of NaCl ingestion, whereas central OT receptors primarily mediate osmolality-induced inhibition of NaCl ingestion in rats.

PubMed Disclaimer

Publication types

LinkOut - more resources