Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Jul;16(4):295-307.
doi: 10.1111/j.1574-6976.1995.tb00177.x.

Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins

Affiliations
Review

Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins

V Braun. FEMS Microbiol Rev. 1995 Jul.

Abstract

Iron in the form of ferric siderophore complexes and vitamin B12 are transported through the outer membrane of Gram-negative bacteria by a mechanism which consumes energy. There is no known energy source in the outer membrane or in the adjacent periplasmic space so that energy is provided by the electrochemical potential across the cytoplasmic membrane. Energy flows from the cytoplasmic into the outer membrane via a complex consisting of the TonB, ExbB and ExbD proteins which are anchored in the cytoplasmic membrane. It is proposed that the TonB--ExbB--ExbD complex opens--via an energized conformation of the TonB protein--channels in the outer membrane, formed by proteins which serves as highly specific binding sites for the various ferric siderophores and vitamin B12. In addition, outer membrane receptors together with the TonB--ExbB--ExbD complex are directly involved in induction of the transcription of ferric citrate and pseudobactin transport genes of Escherichia coli and Pseudomonas putida, respectively.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources