Evolution of 5sRNA
- PMID: 765486
- DOI: 10.1007/BF01732181
Evolution of 5sRNA
Abstract
The evolution of 5sRNA of 17 organisms ranging from human to bacteria has been studied using a sequence homology analysis. The evolutionary rate of 5sRNA genes has been estimated to be 2.2x10(-10) replacement per one nucleotide site per year. This value is about the same as that of cytochrome C or tRNA's (congruent to 2x10(-10)). A phylogenic tree of these organisms including both eukaryotes and prokaryotes has been constructed from the evolutionary distances (the rate of nucleotide substitution per site) data. The time of divergence of prokaryotes and eukaryotes was estimated to be greater than or congruent to 1.75x10(9) years ago and the branching order in eukaryotic kingdoms is consistent with the traditional order. Blue-green algae separated from the bacterial stem greater than or congruent to 1.3x10(9) years ago after eukaryotes had branched.