Detection of nitric oxide production in mice by spin-trapping electron paramagnetic resonance spectroscopy
- PMID: 7662717
- DOI: 10.1016/0925-4439(95)00061-8
Detection of nitric oxide production in mice by spin-trapping electron paramagnetic resonance spectroscopy
Abstract
We describe here a spin-trapping method combined with X-band electron paramagnetic resonance (EPR) spectroscopy for ex vivo measurement of nitric oxide (.NO) levels in the urine of both normal and lipopolysaccharide (LPS)-induced shock mice. Normal or LPS-treated mice were injected subcutaneously with a metal-chelator complex, N-methyl-D-glucamine dithiocarbamate-ferrous iron, [(MGD)2/Fe], which binds to .NO and forms a water-soluble [(MGD)2/Fe-NO] complex. At 2 h after injection of the [(MGD)2/Fe] complex, a three-line EPR signal characteristic of the [(MGD)2/Fe-NO] complex was detected in the urine of either normal or LPS-treated mice. It is estimated that the concentrations of the [(MGD)2/Fe-NO] complex in normal and LPS-treated mouse urine were 1.3 and 35 microM, respectively. This 25-fold increase in .NO levels in the LPS-treated mouse urine provides the direct evidence that LPS challenge induces the overproduction of .NO in mice. Administration of N-monomethyl-L-arginine (NMMA; 50 mg/kg) inhibited the ex vivo signal intensities of the [(MGD)2/Fe-NO] complex in the urine of either normal or LPS-treated mouse urine. Furthermore, after injection of 15N-arginine (10 mg per mouse), a composite EPR spectrum, consisting of a three-line spectrum of the [(MGD)2/Fe-14NO] complex and a two-line spectrum of the [(MGD)2/Fe-15NO] complex, was detected in the urine. These isotopic tracer experiments further confirm that the detected .NO levels in the mouse urine are produced via the arginine-nitric oxide pathway. This ex vivo spin-trapping method should readily be adapted to experiments on larger animals and provide a noninvasive way of measuring both constitutive and inducible .NO synthase activities in living animals under physiological as well as pathophysiological conditions where .NO is overproduced.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
