Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug 19;161(2):183-7.
doi: 10.1016/0378-1119(95)00223-s.

Increased exon-trapping efficiency through modifications to the pSPL3 splicing vector

Affiliations

Increased exon-trapping efficiency through modifications to the pSPL3 splicing vector

T C Burn et al. Gene. .

Abstract

Exon trapping allows for the rapid identification and cloning of coding regions from cloned eukaryotic DNA. In preliminary experiments, we observed two phenomena which limited the exon-trapping efficiency of pSPL3-based systems. The first factor that affected performance was revealed when we found that up to 50% of the putative trapped exons contained sequences derived from the intron of the pSPL3 trapping vector. Removal of the DNA sequences responsible for the cryptic splice event from the original splicing vector resulted in a new vector, pSPL3B. We demonstrate that pSPL3B virtually eliminates pSPL3-only spliced products while maximizing the proportion of exon traps containing genomic DNA (> 98%). The other step which impacted performance was our observation that a majority of the ampicillin-resistant (APR) clones produced after shotgun subcloning from ApR cosmids into pSPL3 were untrappable, pSPL3-deficient, recircularized cosmid vector fragments. Replacement of the pSPL3 ApR gene with the CmR cassette encoding chloramphenicol (Cm) acetyltransferase enabled selection for only pSPL3-containing CmR clones. We show a 30-40-fold increase in the initial subcloning efficiency of cosmid-derived fragments with pSPL3-CAM, when compared to pSPL3. The collective vector alterations described improve the overall exon-trapping efficiency of the pSPL3-based trapping system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources