Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Sep 15;270(37):21695-700.
doi: 10.1074/jbc.270.37.21695.

Cloning and characterization of a human protein kinase with homology to Ste20

Affiliations
Free article
Comparative Study

Cloning and characterization of a human protein kinase with homology to Ste20

C L Creasy et al. J Biol Chem. .
Free article

Abstract

A human protein kinase (termed MST1) has been cloned and characterized. The MST1 catalytic domain is most homologous to Ste20 and other Ste20-like kinases (62-65% similar). MST1 is expressed ubiquitously, and the MST1 protein is present in all human cell lines examined. Biochemical characterization of MST1 catalytic activity demonstrates that it is a serine/threonine kinase, and that it can phosphorylate an exogenous substrate as well as itself in an in vitro kinase assay. Further characterization of the protein indicates MST1 activity increases approximately 3-4-fold upon treatment with PP2A, suggesting that MST1 is negatively regulated by phosphorylation. MST1 activity decreases approximately 2-fold upon treatment with epidermal growth factor; however, overexpression of MST1 does not affect extracellular signal-regulated kinase-1 and -2 activation. MST1 is unaffected by heat shock or high osmolarity, indicating that it is not involved in the stress-activated or high osmolarity glycerol signal transduction pathways. Thus MST1, although homologous to a member of a yeast MAPK cascade, is not involved in the regulation of a known mammalian MAPK pathway and potentially regulates a novel signaling cascade.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Associated data